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Abstract. The low-x data of the structure function F2 measured by the collaborations H1 and ZEUS are
compared with the prediction of the DGLAP equations. A new method of comparing data and theory
is presented. The systematic and quantitative analysis shows that the predicted 1/x behavior deviates
increasingly from the observed one as x decreases below 10−3.

1 Introduction

Lepton–nucleon experiments have paved the way towards
the standard model with the observation of the proton
substructure and the observation of weak neutral currents.
Together with the ideas on gauge theories based on non-
abelian algebras and renormalizability a new framework
for electroweak and strong interactions has been set up. A
worldwide long term program was initiated.

The intermediate γ in e–nucleon and the intermediate
W in ν–nucleon scattering probe the same internal struc-
ture of the nucleon. The quark–parton model provided
a simple interpretation of lepton–nucleon scattering, like
for instance the structure function F2 as a manifestion of
the fractional momentum distribution of quarks and an-
tiquarks in the nucleon. The precise measurement of the
momentum sum rule in the Gargamelle ν experiment [1]
resulted in 0.50 ± 0.03 rather than 1. This surprising re-
sult indicated that quarks and antiquarks by far do not
make up the momentum of the nucleon, and another novel
type of constituents, not visible to the W , must be present.
They were attributed to the gluons as carriers of the strong
force in the new microscopic theory of strong interactions,
QCD [2]. The apparently free behavior of the partons ob-
served in deep inelastic lepton–nucleon scattering found
its explanation in the property of the strong force to de-
crease at short distances. The immediate consequence was
that the nucleon structure functions cannot be functions
of the Bjorkén scaling variable x alone, but must depend
on both kinematic variables characterizing deep inelastic
scattering, namely x and Q2, where Q2 is the 4-momentum
transfer squared from the lepton to the hadron system.

An impressive series of leptoproduction experiments of
increasing precision was carried out. The differential cross
section depends upon the three structure functions F2, FL

and xF3. ν, ν experiments were distinguished by measuring
in addition to F2 also xF3. The deep inelastic scattering
experiments constituted a solid testing ground for QCD.
In the kinematic regime, where Q2 is sufficiently large, typ-

ically larger than 1 GeV2, the strong interaction coupling
constant αs(Q2) is small and a perturbative treatment is
possible. The DGLAP evolution equations [3, 4] offered
an elegant way to test perturbative QCD in deep inelas-
tic scattering experiments through the investigation of the
deviation from scaling. Given the structure functions or
the parton distribution functions as a function of x for a
chosen starting value, Q2

st, QCD predicts the Q2 evolution.
The comparison between theory and experiment always in-
volved a double aspect: the determination of the parton
distribution functions, which cannot be predicted, and the
properties of the theory to be tested.

The tests performed in the 70’s and 80’s were a great
success and established the validity of the DGLAP equa-
tions in the (Q2, 1/x)-phase space delimited to a triangular
area determined by the size of the available beam energy,
in practice reaching out for Q2 to a few 100 GeV2 and for x
down to slightly below 10−2. In comparing and interpreting
the wealth of measurements, there remained nevertheless a
serious concern related to the arbitrariness in distinguishing
the perturbative from the non-perturbative regime and to
the correlations caused by the unknown gluon distribution
function. As a matter of fact, the Q2 evolution of the struc-
ture function xF3 measured in ν, ν experiments tests QCD
independently of assumptions about the gluon; however,
its statistical significance was much less than the precise F2
measurements, which strongly depend upon assumptions
about the gluon distribution function.

A new era of QCD tests started with the running of the
ep-collider HERA 1992, which extended the phase space
by two orders of magnitude in Q2 and in x. The first data
in the low-x region revealed a huge rise and thereby a new
feature in the phenomenology of F2. The subsequent de-
tailed measurements by H1 [5] and ZEUS [6] offered new
tests of QCD. They were performed by the experimental
groups themselves as well as by various groups of theoreti-
cians. Recent global fits by MRST [7], CTEQ [8], GRV [9]
including the HERA data on F2 resulted in good fits sup-
porting thus the validity of the DGLAP evolution in the
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valence region up to Q2 of order 104 GeV2 and in the sea
region, down to x = 10−5, up to the phase space limit.
The successful extension of the fits up to the largest Q2

values was expected. That the fits would still work at low
x was rather a surprise, as many were prepared to witness
a failure of the perturbative approach, where terms with
log 1/x should get numerically more and more prominent.

It is the purpose of this study to focus on the low-x
regime of the (Q2, 1/x)-phase space available in the HERA
experiments, to investigate there in detail the rôle of the
1/x terms in the DGLAP kernels and to show that for
x below 10−3 a discrepancy between theory and experi-
ment develops.

1.1 Outline

Section 2 recalls some phenomenological aspects of F ep
2 re-

formulated in terms of a new variable q replacing ln Q2. A
new method of comparing data and theory is presented in
Sect. 4, which makes use of F2, and of its first and second
derivative in Q2. The next section describes the decompo-
sition of F ep

2 into a singlet and a non-singlet part. Section 5
deals with the DGLAP equations formulated in terms of q
and illustrates their effect when applied to a valence-like
and a sea-like distribution separately for leading and next-
to-leading order. After these preparations the main step
is taken in Sect. 7 with the evaluation of the curvature of
the singlet part and F ep

2 itself. The last section concludes
with the comparison of data and theory.

2 Phenomenology of F2

The investigation of the Q2 behavior of the early low-x F2
data measured by the HERA collaborations H1 and ZEUS
suggested an approximate scaling behavior [10, 11] of the
formF2 ∼ log Q2/Q2

0 withQ2
0 ≈ 0.5 GeV2.With the advent

of further measurements extending to Q2 < 1 GeV2 it was
desirable to have, instead of the usual lnQ2, a quantity
which allows one to examine the Q2 dependence of the F2
data in the neighborhood of 0. This is achieved [12] with
the quantity1

q = log(1 + Q2/Q2
0) , (1)

where Q2
0 is a constant set to 0.5 GeV2. The new quantity q

is mathematically equivalent to the traditional lnQ2, but
has the feature to run from 0 to ∞. For Q2 � Q2

0 q is equiv-
alent to lnQ2, while otherwise it approaches Q2. Figure 1
illustrates the F2 measurements by H1 [5] and ZEUS [6]
as a function of q for a x-bin centered at x = 10−4. The
structure function is within experimental uncertainties pro-
portional to q over the full measured range corresponding
to Q2 from about 0.3 until 6.7 GeV2, i.e. near the HERA
phase space limit. When the F2 points are extrapolated
towards Q2 = 0 by a linear fit, a value for F2 consistent
with 0 comes out in agreement with the conservation of
the electromagnetic current.

1 log is taken to base 10.

red dots = MRST01 prediction for x = 0.0001
blue symbols F2 data
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Fig. 1. The above figure shows the q dependence of the F2 data
for x-bin centered at x = 10−4; the dotted line is the prediction
of the MRST01 parametrization. In the figure below predictions
of the MRST01 and the CTEQ6 parametrization are compared
for x = 10−4

Figure 1 shows also by the dotted line the prediction of
the MRST parametrization [7] for x = 10−4, which is the
result of their global fit. The fit is based on the x dependence
of the parton distributions a priori assumed at the starting
scale Q2

st = 1.25 GeV2, i.e. qst = 0.54, and then evolved in
Q2 using theDGLAPevolution equations (see (4)). The free
parameters of the initial parton distributions are varied in
an iterative procedure until the overall data and prediction
yield a minimal χ2. The comparison of the dotted line with
the measured points illustrates that the global fit in this
particular x-bin is a best fit, though not a good fit. In fact,
there seems to be an indication for a difference in shape.
This suggests the size of the second derivative of F2 with
respect to q to serve as a test quantity in examining the
validity of DGLAP in the deep sea.

The data of F2 in the deep sea are well described by a
second order polynomial in q:

F2(x, q) = a0(x) + a1(x) · q + a2(x) · q2,
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Curvature of F2 in q
averaged over 0.5 < q < 1.4
1 GeV2 < Q2 < 12 GeV2
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Fig. 2. Curvature of F2 averaged over the interval 0.5 < q < 1.4
for various fixed x-bins; the data points (squares) are compared
with the MRST prediction

where a0(x) and a2(x) are approximately 0, as seen for
example in Fig. 1. This form remains valid even in the
valence region as long as q is restricted to the interval
(0.5, 2). The curvature term a2(x) is obtained as the second
derivative of F2 with respect to q, namely ∂2

qF2(x, q) =
2 a2(x).

Figure 2 shows the curvature term a2(x) for the data at
various fixed x-bins in comparison with the prediction of
MRST. The lower limit in q is set to the starting scale for the
DGLAP evolution in the MRST fit. The upper limit is cho-
sen as small as possible, such that there are still enough
measurements to determine the curvature. This require-
ment led to Q2 < 12 GeV2 or q < 1.4, unless the HERA
phase space limit is smaller. The experimental points are
shown by the crosses, the MRST points by the dots. The
MRST points are obtained applying the same procedure,
but replacing the measured F2 values by the correspond-
ing values predicted by MRST. It should be noted that
the average value of q decreases with decreasing x due to
the more and more restricted phase space. The data are
consistent with being flat in q, while the MRST prediction
deviates the more the smaller x is.

3 Method of analysis

The traditional way of testing the linear system of coupled
DGLAP equations (see (4)) consists in performing the Q2

evolution in the form of a global fit, as indicated above
(c.f. Sect. 2). One single quantity, the overall χ2, holds
simultaneously the information on the shape of the parton
distribution functions and on the validity of the DGLAP
equations. A good fit means merely a consistency check
for QCD.

A curve can be characterized in two distinct ways: either
by points over a finite size or infinitesimally by one point
and derivatives at this point. The method proposed here
and elaborated below relies on the latter characterization.

Instead of performing the evolution of the singlet over the
range in q, where measurements exist, the singlet is studied
locally in q and the information about the q behavior is
accounted for by considering the higher order derivatives
with respect to q.

For all subsequent numerical calculations q is chosen
to be 1, corresponding to Q2 = 4.5 GeV2. This value is
big enough to justify the use of perturbative QCD and
small enough to access the HERA F2 measurements down
to x = 10−5, leaving two orders of magnitude in x for
probing the low-x properties of the DGLAP kernels.

Given as input distributions the singlet Q+(x, 1) and
its derivative ∂qQ

+(x, 1), the gluon distribution function
G(x, 1) is derived from the first of the coupled DGLAP
equations, as elaborated below in Sect. 7. In the next step
the second derivative ∂2

qQ+(x, 1) is calculated. There the
unknown derivative ∂qG(x, 1) emerges. The second of the
coupled DGLAP equations provides precisely this term.
The quantity ∂2

qQ+(x, 1) is calculated in the deep sea and
after relating it to ∂2

qF2(x, 1) is compared with the experi-
mentally determined curvature. This completes the local
test of the validity of the DGLAP equations.

4 Decomposition of F ep
2

The Q2 evolution of the structure function F2 in ep scatter-
ing proceeds differently for the singlet and the non-singlet
part. The QCD expression for F ep

2 is given in terms of the
quark (qi(x, Q2)) and antiquark (qi(x, Q2)) density func-
tions for each flavor i and the gluon function g(x, Q2):

F ep
2 = CF ⊗ N + ε (CF ⊗ Q+ + CG ⊗ G). (2)

This is the standard decomposition (see e.g. [13]). The
meaning of the variables is as follows.

– Singlet: Q+ =
∑f

i x(qi+qi) with f the number of active
flavors.

– QED coupling constants: e2
i for flavor i.

– ε = 1
f

∑f
i e2

i .
– Non-singlet: N =

∑f
i e2

i

(
x(qi + qi) − 1

f Q+
)
.

– Gluon: G = xg.
– Coefficient functions CF and CG: CF has a leading δ

function and an O(αs/2π) contribution, while CG is
directly of order to O(αs/2π).

The MS scheme is used and four massless quarks. F ep
2

is dominated by N + εQ+, but receives subleading contri-
butions from both the quarks and the gluon through the
coefficient functions.

Detailed F ep
2 measurements are available from the two

HERA collaborations H1 [5] and ZEUS [6]. The collabora-
tions have provided in their publications careful analyses
of systematic error sources. In their kinematic overlap re-
gion the data sets agree well, once the systematics is taken
into account. Some of the correlated systematic sources
affect not only the absolute values F2, but also the deriva-
tive ∂qF2.
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The structure function F ep
2 (see (2)) is dominated by

εQ+ and receives contributions from the coefficient func-
tions at O(αs/2π) and from the non-singlet. For the actual
calculations done below for q = 1 it is then a good appro-
ximation to relate the x distributions of the singlet and its
derivative to the well measured structure function, as fol-
lows:

Q+(x, 1) =
1
ε
Fmeas

2 (x, 1),

∂qQ
+(x, 1) =

1
ε
∂qF

meas
2 (x, 1). (3)

In the kinematic region of interest, the deep sea with
x < 0.001, the non-singlet distribution contributes little to
F2 and ∂qF2. Furthermore, the convolutions of Q+ and G
with the coefficient functions only moderately modify the
shape of the singlet distribution, both for the x and Q2

dependences. The small corrections implied by the identi-
fication given in (3) are considered in Sect. 8.

5 The DGLAP equations

From the parton density functions of the quarks qf (x, Q2),
and antiquarks qf (x, Q2), for the active flavors f and the
gluon g(x, Q2) one can form the following distributions:

Valence : Q− =
∑

x(qi − qi),
Singlet : Q+ =

∑
x(qi + qi),

Gluon : G = xg.

For the values of Q2 considered f = 4 is assumed, and
furthermore all quarks are taken to be massless.

The DGLAP integro-differential equations for the sing-
let and the gluon read in compact form

∂q

(
Q+

G

)
= a(q)

(
Pqq Pqg

Pgq Pgg

)
⊗

(
Q+

G

)
. (4)

The equations are formulated in terms of the variable q,
rather than the usual lnQ2. The variable transformation
lnQ2 → q = log(1 + Q2/Q2

0) implies

d q =
Q2

Q2 + Q2
0

1
ln10

d lnQ2,

where the Jacobi factor Q2/(Q2 + Q2
0) appears and the

factor ln 10, since the variable q is defined with log to base
10. The notation ∂q is a shorthand for ∂/∂q. Furthermore,

a(q) =
αs(Q2)

2π
Q2 + Q2

0

Q2 ln 10.

It is interesting to note that q · a(q) has only a small Q2

dependence: it increases by 3% in going from 5 to 50 GeV2

and decreases by 3% in going from 5 to 1 GeV2.
The kernels Pij describe the splitting of the parton

j → i. They are used in next-to-leading order in the MS
scheme as published in [13]:

P (x, αs) = PLO(x) +
αs

2π
PNLO(x).
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Fig. 3. The kernels Pqg and Pgq versus log 1/x; the upper curve
refers to Pgq. The log 1/x starts at 0.1 excluding the singular
behavior of x near 1

The leading and next-to-leading kernels are by themselves
functions of x alone. However, the full kernels receive a Q2

dependence indirectly through the Q2 dependence of the
QCD coupling αs.

A characteristic feature of all four kernels consists in
the fact that they contain in next-to-leading order terms
proportional to 1/x, the two kernels Pqg and Pgg even
already at lowest order. Their presence provokes an almost
explosive rise at values of x < 0.001, as illustrated in Fig. 3
for the off-diagonal kernels Pqg and Pgq. Their behavior
becomes singular for x → 1 and is not shown. In the deep
sea region the x behavior of Pqg and Pgq is similar; this
leads in their ratio to a nearly x independent shape, as
displayed in Fig. 4. The two diagonal kernels Pqq and Pgg

include distributions, i.e. plus and δ functions, and cannot
be displayed directly. Instead, the properties of a kernel P
can be studied by comparing a given distribution function f
with the corresponding folded distribution function P ⊗ f :

f(x) → P ⊗ f(x).

The convolution of a function f(x) with the kernel P (x)
is defined by

P ⊗ f(x) =
∫ 1

x

dξ P (ξ) f

(
x

ξ

)
.
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Fig. 4. The ratio Pqg/Pgq for 0.00001 < x < 0.97
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The integral runs from x to 1, consequently the value of
the folded distribution at x̂ involves the functional depen-
dence of the input function from x̂ until 1. The graphical
representation of the x dependence is conveniently given
in terms of log 1/x.

For illustration the convolution effect is demonstrated
for two ad hoc, but typical functions, a valence-like distri-
bution (fval) and sea-like distribution (fsea).

5.1 Study of fval(x) → a(q) P (x, αs(q)) ⊗ fval(x)

Figure 5 shows on top the valence-like distribution,

fval(x) = 3.28
√

x(1 − x)3,
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Fig. 5. a The valence-like distribution fval(x) versus log 1/x.
b a(q) Pqq ⊗ fval and a(q)Pqg ⊗ fval for q = 1 versus log
1/x. c a(q)Pgg ⊗ fval and a(q)Pgq ⊗ fval for q = 1 versus
log 1/x. The solid (dashed) curves show the convolution with
the full (leading) order kernel marked with the appropriate
indices. The curves resulting from the folding with the diagonal
kernels Pqq and Pgg show the characteristic underswinger in
the valence region

and below ((b) and (c)) for q = 1 the distributions resulting
from the folding with the four kernels. The factor 3.28 is
chosen to make the integral over the corresponding density
equal to 3. The diagonal kernels generate the characteristic
shape, which causes the depletion of the input distribution
in the valence region and the corresponding gain in the sea
region. There is a marked difference between Pqq and Pqg

at lowest order and full order in the sea region. It originates
from the fact that in the leading order kernels 1/x terms
are absent, while they are present at next-to-leading order.
On the contrary, the other two kernels, Pgq and Pgg, have
1/x terms both at leading order and next-to-leading order
and the leading order contribution dominates. The above
mentioned divergences of the kernels Pgq and Pgg for x → 1
are absent in P ⊗ fval due to the power behavior of fval
near 1.

The convolution of a valence-like function leads in the
deep sea to a flat shape for all four kernels, as expected for
1/x ⊗ fval → constant. The plateau heights are charac-
teristically different: smallest for Pqq and largest for Pgg.

5.2 Study of fsea(x) → a(q) P (x, αs(q)) ⊗ fsea(x)

Similarly, Fig. 6 shows the four convolutions of a sea-like
distribution function chosen to be

fsea(x) = 1.5 log
(

1 +
0.04(1 − x)

x

)
.

It is similar to Q+ with regard to the behavior in the deep
sea (see Fig. 7a). The asymptotic behavior in the deep sea
is again determined by the 1/x terms of the kernels with
the effect that the linear logarithmic behavior turns into
a quadratic one. The properties of the kernels generate a
pattern analogous to the valence-like case. The Pqq ⊗ fsea
becomes very small, while Pgg ⊗ fsea is strongly enhanced
in the deep sea.

5.3 Some conclusions

The two opposite cases may serve to estimate the effect
of a modification in the input distributions regarding the
size and shape of the folded distributions. Three simple
examples may illustrate it.
(a) Adding to the gluon function a small valence-like con-
tribution would affect ∂qQ

+, the slope of the singlet, in the
deep sea by a small x independent upward shift. Figure 5b
allows for a quantitative evaluation.
(b) Consider Fig. 1. Suppose a small sea-like contribution
is added to the shape of the gluon distribution function,
then Fig. 6b shows that to ∂qQ

+ in the deep sea would
be added a term quadratic in log 1/x, thus generating a
non-trivial increase of the curvature of the singlet Q+.
(c) It is also clear that a small modification of the x de-
pendence of the singlet Q+ (for given q) does not sizeably
affect its slope in q.

It is interesting to note that all folded distributions are
positive in the deep sea region regardless ofwhether they are
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Fig. 6. Convolution of the sea-like distribution fsea (uppermost
curve) with the four kernels Pij versus log 1/x. Explanation of
the curves as in caption of Fig. 5, exchanging val by sea
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Fig. 7. The x distributions of Q+(x, 1) a, Q−(x, 1) b and the
gluon G(x, 1) c

valence- or sea-like. This is different in the valence region.
Therefore, compensating effects in the coupled DGLAP
are possible in the valence region, but not so in the deep
sea region.

Even if the distribution function f is independent of q,
the folded distribution function Pij ⊗ f depends upon q
through the αs dependence of the kernels Pij .

6 The curvature

The first of the coupled DGLAP equations (see (4)), i.e.

∂qQ
+ = a(q)

(
Pqq ⊗ Q+ + Pqg ⊗ G

)
, (5)

is differentiated with respect to q in order to obtain the
required test quantity, yielding

∂2
qQ+(x, q) = (Quark-term) + (Gluon-term). (6)

Each of the two terms consists in turn of three contributions.
The Quark-term is numerically small, because the q

dependences of Q+ and of a(q) nearly compensate each
other, as mentioned in Sect. 4. The numerical result is
shown in Fig. 8 by curve d.

The Gluon-term with its three contributions is given
explicitly in the following equation, (7):

∂q (a(q)Pqg ⊗ G(x, q)) =

+
(

a′
a + α′

s
αs

)
· a(q) Pqg ⊗ G

− α′
s

αs
· a(q) PLO

qg ⊗ G

+ a(q) Pqg ⊗ ∂qG.

(7)

The prime (′) in (7) denotes the derivative with respect
to q. Equation (7) involves both the gluon distribution
function G and its derivative ∂qG. A closer inspection of the
formula shows, however, that the dependence on the gluon
is not strong. To this end it is noted that the expression
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Fig. 8. Contributions to ∂2
q Q+ versus log 1/x for q = 1. The

curves represent the Quark-term d and the three contributions
of the Gluon-term, i.e. term 1 a, term 2 b and term 3 c
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a(q) Pqg⊗G follows directly from the first DGLAP equation
(see (5)), namely

a(q) Pqg ⊗ G = ∂qQ
+ − a(q) Pqq ⊗ Q+. (8)

It is determined by the experimental input distributions
Q+(x, 1) (see curve a in Fig. 7) and ∂qQ

+(x, 1). The gluon
distribution function G(x, 1) itself can be obtained from
the constraint equation (8). Given the properties of the
kernel Pqg the magnitude and shape of G(x, 1) are defined
and little scope for variations is left. Figure 7 (curve c)
shows the resulting distribution.

The three terms of (7) are discussed one by one and
evaluated for q = 1.
– Term 1 : The x dependence is given by (8), since the

factor a′/a + α′
s/αs is independent of x and, for q = 1,

equals −1.3.
– Term 2 involves the gluon folded with the leading order

kernel PLO
qg , which has the simple form x2 + (1 − x)2;

it is numerically insignificant.
– Term 3 involves ∂qG and is the critical one. The ex-

pression for ∂qG is given by the second of the coupled
DGLAP equations (see (4)):

∂qG = a(q)
(
Pgq ⊗ Q+ + Pgg ⊗ G

)
. (9)

Insertion in term 3 yields

a(q) Pqg ⊗ ∂qG

= a(q) Pqg ⊗ G · a(q)
Pqg ⊗ (Pgq ⊗ Q+ + Pgg ⊗ G)

Pqg ⊗ G
.

The first factor (see (8)) does not depend upon the
gluon, while in the second factor, the ratio, the gluon
appears both in the numerator and the denominator. Its
magnitude cancels and its shape affects the ratio only
weakly. In the deep sea the ratio is well approximated by

1.2 a
Pqg ⊗ PLO

gg ⊗ G

Pqg ⊗ G
.

Recalling the structure of the kernels it is quite evident
that the numerator is sensitive to 1

x ⊗ 1
x , while the

denominator is sensitive only to one 1
x -operator. It is

then not so surprising that term 3 with ∂qG dominates
the behavior in the deep sea and unavoidably produces
a strong x dependence.
The quantitative evaluation of the contributions to the

curvature is carried out using the singlet and gluon distri-
bution functions displayed in Fig. 7. The results are shown
in Fig. 8. The contribution of the Quark-term (curve d)
is negative and very close to 0, as anticipated. The three
contributions from the Gluon-term decrease linearly (a),
remain approximately constant (b) and increase quadra-
tically (c).

It is concluded that Q+(x, q) has a significant positive
curvature in the deep sea region, where the contribution
from ∂qG outnumbers all other contributions. The x behav-
ior of the curvature is a property of the kernels and is hardly
sensitive to the size and shape of the gluon. The quantity
∂2

qQ+(x, q) probes in a non-trivial way both DGLAP equa-
tions and their kernels.
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Fig. 9. Effect of the coefficient functions to N + εQ+ and its
derivatives versus log 1/x for q = 1

7 Prediction of ∂2
qF ep

2

The theoretical expression for F ep
2 is given in (2). It in-

volves the parton distributions and the coefficient functions
CF and CG. The quantity to be determined is the second
derivative of F ep

2 with respect to q, i.e.

∂2
qF ep

2 = ∂2
q (CF ⊗ (N + ε Q+) + CG ⊗ εG),

evaluated in the deep sea and for q = 1. In addition to
the dominating contribution of ∂2

qQ+ discussed in Sect. 7,
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also the effect of the non-singlet N and the coefficient
functions together with their respective derivatives have
to be considered.

CF , the first coefficient function, consists of two distri-
butions, a δ distribution, which reproduces N + ε Q+, and
a plus-distribution applied to N + ε Q+ contributing at
order αs/2π.

N + ε Q+ is dominated by the singlet Q+. Even in
the deep sea the non-singlet N is not vanishing, since at
Q2 = 4.5 GeV2 the charmed sea is not yet fully devel-
oped, implying c − s < 0. However, the evolution of the
non-singlet contributes negligibly to the first and second
derivative of F ep

2 .
The gluon and its derivatives with respect to q con-

tribute directly through the second coefficient function CG

and also in the evaluation of ∂2
qQ+.

Figure 9 shows the contribution arising from the coef-
ficient functions to N + εQ+ and its derivatives. As anti-
cipated, N + εQ+ is a good approximation to F ep

2 and as
well for the first derivative with respect to q. The second
derivative is modified in the deep sea regime by less than
about 10%. The contribution of the non-singlet to ∂2

qF2
is negligible.

In conclusion: the statement that ∂2Q+ is significantly
positive remains valid also for ∂2F ep

2 . This conclusion is
stable against variations of the input distributions.

It may be noted that, qualitatively, the feature of a
positive curvature can be deduced already from the theo-
retical study [14] predicting an unbounded growth of F2
with 1/x under certain uniformity assumptions.

8 Conclusions

A dedicated investigation of the DGLAP kernels in the
low-x regime has been performed. Their striking feature is
the presence of 1/x terms producing a strong rise in F2 for
x < 0.001. Previous QCD analyses based on low energy
lepton–nucleon data did not probe that behavior, since
they reached hardly below x = 0.01. Recent global QCD
analyses, which also include the low-x HERA F2 data, are
only partially sensitive to the low-x behavior of the kernels,
because the relevant data represent a small fraction of the
data entering the global fit und thus their effect to the
overall χ2 remained unnoticed.

The study presented here was focused directly on the
deep sea and has examined the second derivative of the
structure function F ep

2 with respect to q as a quantity for
probing the low-x feature of the DGLAP kernels. The main
result is shown in Fig. 10. The DGLAP kernels predict a
significant positive curvature of F2 at fixed q = 1 in the
low-x region in contrast to the flat behavior in q of the
HERA F2-data. The deviation increases with decreasing
x. This conclusion is stable against changes of the shape
of the parton distribution functions, in particular of the
gluon distribution.

It is interesting to note that Pij ⊗ f is positive for all
kernels provided x is deep enough in the sea region and f
positive definite. This implies for the DGLAP equations

Curvature of F2 at Q2=4.5 GeV2

line = DGLAP prediction
squares = DATA
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Fig. 10. Measured and calculated curvature of F2 for q = 1
versus x

that in the deep sea the derivatives of the singlet and the
gluon receive positive contributions from both the folded
singlet and the folded gluon, contrary to mutual compen-
sations possible in the valence region.
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